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The structure of a self-preserving turbulent plane jet 
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The structure of a self-preserving turbulent plane jet exhausting into a slow- 
moving parallel airstream is studied. The investigation includes results of 
turbulence measurements and the structure is compared with that of a self- 
preserving plane wake. The results show that self-preservation is established at  
a distance of about thirty jet widths downstream of the jet nozzle and that, in the 
self-preserving region of the jet, the distributions of the turbulent intensities and 
shear stress across the jet are very similar to those found in the plane wake. The 
distribution of the intermittency factor, however, is found to be more like that 
found in an axi-symmetric jet than in a plane wake. The turbulent energy balance 
also shows important differences to that of the wake flow. The unsteady irrota- 
tional flow outside the turbulent shear layer is investigated and it is found that 
the experimental results agree with the predictions of the theories of Phillips 
(1955) and Stewart (1956). Some comments are also made on the eddy structure 
and the applicability of the simple theories of turbulence. 

1. Introduction 
The simplest types of turbulent shear flows are those of the self-preserving 

type in which the structure of the shear layer is similar at all streamwise stations. 
These flows may be subdivided into the bounded flows such as channel flows and 
boundary layers, and the unbounded flows such as jets and wakes. It is with this 
latter group that the present work is concerned. Although Townsend (1956) and 
Grant ( 1958) have studied extensively the structure of the self-preserving plane 
wake, the situation in regard to jet flows is not so satisfactory. Corrsin and his 
co-workers have carried out a large number of investigations into the axi- 
symmetric jet exhausting into a stationary atmosphere, but some of these 
measurements have been adversely affected by the high turbulence levels 
encountered and the non-linear response of the hot-wire anemometers used. 
Moreover, for comparison with Townsend’s wake investigations, measurements 
in a plane jet would be preferred. The most important reports on this flow are 
those of Forthmann (1936), Miller & Commings (1957), van der Hegge Zijnen 
(1958a, b, c) and Nakaguchi (1961). Unfortunately, none of these investigations 
were comparable in detail to Townsend’s work on the wake, and the present work 
was undertaken to provide more information about this flow than was hitherto 
available. 

The condition for self-preservation of a plane jet is that the jet velocity on the 

7 Now at the Royal Aircraft Establishment, Farnborough, Hampshire. 



32 L. J .  8. Bradbury 

centre-line of the flow must be much greater than the free-stream velocity and 
this condition has been achieved in the past by the obvious expedient of carrying 
out measurements in a plane jet exhausting into a stationary atmosphere. How- 
ever, this has the disadvantage that the turbulent intensities at  the edge of the 
jet are very high which leads invariably to large errors in the measurements. In  
the present experiments, this problem was largely avoided by having the jet 
exhaust into a comparatively slow-moving airstream. This flow cannot be 
exactly self-preserving but the departure from self-preservation in the region in 
which measurements were made was found to be small and of no significance. 

The distributions across the jet of mean velocity, static pressure, intermittency 
factor and the turbulent intensities and shear stress have been measured in the 
self-preserving region of the flow. Also, the turbulent energy balance has been 
computed and the results of a tentative study of the eddy structure are reported. 
The results of these various measurements are compared in some detail with the 
corresponding results for the plane wake flow. Some measurements have also 
been made in the irrotational flow outside the turbulent jet and comparisons are 
made with the theories of Phillips (1955) and Stewart (1956). Finally, the applic- 
ability of the various simple theories of turbulence is discussed. 

2. Equations of motion and self-preservation 
Only two-dimensional flows will be considered. Cartesian co-ordinates will be 

used with the x-axis and y-axis lying parallel and normal to the free-stream 
direction respectively. The longitudinal or z-component of mean velocity will be 
denoted by U and the lateral or y-component by V .  The turbulent velocities will 
be denoted as usual by u, v and w. The equations of motion for a free two- 
dimensional shear layer with ' boundary layer ' assumptions are 

( 1 )  

PI = P+pvz, ( 2 )  

au/ax+ ari/ay = 0. (3) 

u = q+ ti,f(y/S); us = u;g,,(y/S); u2 = u;g,(y/S); v2 = u;g,(y/S). (4) 

u-++-=-_-.-.- au au a m  a(?-2)  
ax ay ay ax 

where P is the static pressure and the suffix 1 refers to free-stream conditions. 
The continuity equation is 

Following Townsend (1956), we may consider self-preserving flows in which 
- - 

Cb is taken as the mean velocity difference between the centre-line of the shear 
flow and the free-stream and S is some relevant length scale of the shear layer 
which will be defined in the present work as the y-ordinate at  which U = Ul + +Uo 
(see figure 1) ; f, gl,, g1 and g, are all functions of 7 = y/S only. Substituting these 
expressions into equation (1)  gives 
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To be consistent with the assumption of self-preservation, it is necessary that 
the coefficients in equation (5) are in constant ratio to one another. With the use 
of the momentum integral equation, this leads to the following conditions (see 
Townsend 1956) : 

(i) When U,, B U,, 6cc x and q c c  x-4. This is the plane jet flow in a slow- 
moving airstream when the velocity on the centre-line of the jet is much greater 
than the free-stream velocity. 

FIGURE 1. Schematic representation of tho flow. 

(ii) When U, < U,, Scc x* and U,cc x-*. This represents either a plane wake far 
downstream from the cylinder producing the wake or, alternatively, a plane jet 
flow in a moving airstream when the velocity on the jet centre-line is approaching 
the free-stream velocity. 

(iii) When U, = U, = const., 6cc x. This is the free-mixing layer between two 
parallel streams. 

In  this note, we are concerned with the first of these flows. The condition for 
self-preservation that U, $ U, has been obtained in the past by exhausting the 
jet into a stationary atmosphere, i.e. U, = 0. However, as mentioned in the 
introduction, this has some serious disadvantages and, in the present experi- 
ments, the jet exhausted into a comparatively slow-moving airstream. In this 
way, the turbulent intensities relative to the local mean velocity were greatly 
reduced. 

The shear stress was measured with a hot-wire anemometer and also calculated 
from the mean velocity measurements using equation (5), which may be 
integrated to give 

3 Fluid Mech. 23 



34 L. J .  S. Bradbury 

The terms containing the functions g, and g2 are small and have been ignored. 
This simplification has been checked by using measured values of the functions 
91 and 92. 

In  the case when U, = 0, it is easy to show that equation (6) simplifies to 

The inflow into jets is also of interest and calculations of the mean lateral 
velocity have been made (54.1). From the continuity equation, it is found that 

so that 

Again when U, = 0, this becomes 

3. Experimental apparatus and techniques 
The apparatus consisted basically of a thin wing spanning horizontally the 

4ft. x 3ft. closed return tunnel at Queen Mary College, with a jet nozzle con- 
sisting of a slot 18 in. x # in. extending over the centre 18 in. of the trailing edge 
of the wing (figure 2). The wing shown in figure 3 (plate 1) had a chord of 26in. 
and was approximately 1 in. thick. The air supply for the jet was provided by 
a centrifugal fan which supplied the air to the jet via a duct within the wing. 
The duct ran parallel to the span of the wing with a rectangular cross-section 
13 in. x 1 in. At the wing centre the duct formed a right-angled bend expanding 
out to a section 18in. x lin. On this bend twenty-three corner-vanes were 
provided to ensure an even distribution of velocity at the jet exit. Finally, at the 
trailing edge the duct contracted smoothly to a thickness of $in. to form the 
trailing-edge jet. For the mixing of the jet- and mainstream-flow to be as closely 
two-dimensional as possible, two plywood walls were mounted in the tunnel 
parallel to the mainstream as shown in figure 2 .  

The variation of total head across the span of the jet (at the jet nozzle) was 
within 1 % of the mean value. However, 25in. downstream (which was about 
the farthest point at  which measurements could be made), the distribution had 
developed the ‘saddleback’ form found by van der Hegge Zijnen (19584. Even 
so, over the centre loin. of the jet, the variation of total head was less than 4 %. 

The traversing gear enabled the measuring instruments to be traversed both 
laterally across the jet and longitudinally in the direction of the free-stream. 
Mean velocity and static pressure measurements were made with separate Pitot 
and static tubes of 0-05in. diameter. The turbulence measurements were made 
with constant-current, 0.0001 in. diameter platinum hot-wire anemometers. 
Although the hot-wire anemometer equipment was of conventional design, con- 
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siderable care was taken over its design and development to ensure that measure- 
ments were both reliable and accurate (see Bradbury 1963). 

The turbulent intensities encountered were generally low enough to ignore the 
effect of the turbulence on the mean velocity measurements with the separate 
Pitot and static tubes. However, in the case of the measurement of the static 

FIGURE 2. Plan view of jet wing in the tunnel. 

pressure coefficient, ( P  - P,)/pU& the effect of the turbulence can easily be shown 
to be significant. Equation (2) gives for the true static pressure coefficient 

- 
hP/pU;  = (P-P,)/pu; = -.“I& 

pS = P + ipn(v2+ 21, 
where n is a factor to allow for the effect of the turbulence and which can take 
positive or negative values depending on the scale of the turbulence, with 
limiting values of + 1 and - 1 respectively (see Toomre 1960 and Bradbury 1963). 
Therefore, the measured static pressure coefficient can be written 

Now, for the static tube reading P,, it  is usual to assume that 

- 
APS ~ - G-P, ~- = _f+’% (Z+?) 
P G -  PUi u; u; u; * 

This expression clearly shows that it is possible for the measured and true static 
pressure coefficients to differ considerably from one another. Lack of precise 
information about the dependence of the factor n on the scale of the turbulence 
in relation to the static tube diameter precludes corrections being made to the 

3-2 
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measurements; but it would seem that, in a self-preserving flow, the measured 
static pressure coefficients will also be self-preserving provided the factor n does 
not alter appreciably from one longitudinal station in the flow to another. Thus, 
static pressure measurements can provide a simple means of studying how 
rapidly a flow approaches self-preservation. 

In order to calculate the turbulent intensities from the hot-wire anemometer 
measurements, use was made of the heat-transfer law proposed by Collis & 
Williams (1  959). In  terms of practical parameters, this law may be written 

i2Rjy/( T' - Ti) = A[ 1 + fi( T' - TI)] + B[ 1 + II(T' - TI)] Urn#($), (10) 

where i is the current through the wire, RH is the hot-wire resistance, TH and Tl 
are the hot-wire and ambient temperatures respectively, and U is the air velocity. 
A and B are constants for a given wire and ambient temperature. The parameters 
Cl and Il are only weakly dependent on the ambient temperature and can be 
regarded as absolute constants over the range of ambient temperatures normally 
encountered. According to Collis & Williams 

fi = 0.00164 and n = 0.00025 at Tl = 293 OK. 

The power m is 0.45 at the wire Reynolds number encountered in the present 
experiments. S($) is a function of the angle between the wire and the flow 
direction 9, and represents the effect of yaw on the heat transfer. According to 
experiments of Webster (1962), this function may be written 

S($) = sinm $( 1 + 0.04 cot2 $)h. (11) 

In a note by Ruetnik (1955) it was found that the effect of the second tempera- 
ture coefficient of resistance in the calculation of turbulent intensities was not 
necessarily negligible, and its effect was therefore included in the present work. 
Following the usual linearization technique (see, for example, Newman & Leary 
1949), equations (10) and (1 l), after a good deal of manipulation, give for constant 
current operation 

where i, RH, U and $ are now mean values and where e is the change in voltage 
across the wire due to the turbulent velocities u and v. i, is the current at  U = 0 
obtained from equation (lo),  and R, is the resistance of the wire at ambient 
temperature. Also 

where a and are the first and second temperature coefficients of resistance, 
respectively, and R, is the wire resistance at 0 "C (273 OK). Equation (12) is 
similar in form to that obtained by Ruetnik using King's law and differs from the 
more usual expressions by the inclusion of the (1 + $) term. This term can be 
important and, if it  is ignored, errors may result of about 20-30 yo in the values of 
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u", say. As pointed out by Ruetnik, the term in the expression for q5 is 
positive for tungsten and negative for platinum, taking the respective values of 
+ 0-026 and - 0-045. 

The application of equation (12) to practical measurements follows conven- 
tional procedure and is adequately described by, say, Newman & Leary (1949). 

4. Experimental results 
The tests were carried out with two ratios of free-stream to jet velocity, 

namely with U,lUJ = 0.07 and Ul/uJ = 0- l6 . t  In  both cases, the Reynolds 
number based on jet velocity U,, and nozzle width h, was about 3 x lo4. In  the 
tests with U,/uJ = 0.07, the value of U,/U, varied from 13.3 at the jet nozzle to 
about 4 at x/h = 70, so that the condition for self-preservation, U, B U,, was 
reasonably well fulfilled throughout the region in which measurements were 
made. However, turbulent intensities at the edge of the jet were still too high 
to enable accurate measurements to be made, and consequently the bulk of the 
tests were carried out with Ul/uJ = 0.16. In  this case, U,/U, was only about 1.7 
at x/h = 70, which shows that the condition for self-preservation, U, B U,, was 
not properly maintained. However, by comparison with the results when 
Ul/uJ = 0.07, there is no doubt that, in all major details, the results with 
Ul/uJ = 0.16 are representative of a truly self-preserving jet. The departures 
from self-preservation that were found will be discussed later as they arise and 
the detailed results with UJUJ = 0.07 will not be presented. 

4.1. The mean velocity field 

The mean velocity profiles were measured with separate Pitot and static tubes. 
These profiles in the fully turbulent region of the jet were all found to be geo- 
metrically similar as shown in figure 4 and a good empirical fit to them is given by 

f(q) = exp [ - 0.6749q2( 1 + 0.0269q4)]. (13) 

Compared with previously measured mean velocity profiles in a plane jet, the 
present results show a slightly more rapid approach to the free-stream velocity 
and the profile is not very different from that found by Townsend in a plane 
wake. 3 

A check on the constancy of the momentum flux has been made using the 
results for the spread of the jet and the decay of the centre-line velocity shown 
in figure 5. The momentum integral equation is 

p /Im U (  U - U,) dy  = J ,  the excess momentum flux ( = a constant) ; (14) 

from this we may define a momentum coefficient 

CJ = J/pu:h = s/h[(&/u1)2r2 f (&/ul)lll~. (15) 

t With the wind-tunnel motor switched off, the jet induced a small flow around the 
closed circuit of the tunnel. Under these conditions, the vslue of U,/UJ = 0.07 was 
obtained and this value was therefore the lowest value obtainable. 

$ The expression of Townsend (1956, p. 161) in terms of the reference length, 6, used 
in this note is f(7) = exp[-0*661972(1 +0.0565q4)]. 
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FIGURE 4. Mean velocity profiles in the fully turbulent jet. 
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where I, = J f"(q) dq. Using the results shown infigure5 and the meanvelocity 
--m 

profile function f(r), it  was found that the deviation from the average value of 
CJ = 31.5 was less than 4 yo a t  each of the longitudinal measuring stations. 

The condition for self-preservation that Uocc x-8 is well observed. An expression 
which fits the experimental data is 

( 1 6 )  

where, in this particular case, C = 0.00575 and xo/h = 3. Although the values 
of the constants in this expression have no general significance, it  is worth noting 
that using this expression in the momentum integral equation gives 

( v , / ~ o ) z  = C(x/h - xo/h), 

This expression which is also shown in figure 5 shows that if Uocc x-4, the spread 
of the jet cannot now be exactly proportional to  x as is required for self- 
preservation. However, this departure from true self-preservation is small in the 
present case and is of no great significance. 

Lateral mean velocity profiles have been calculated using equation (8) for 
x/h = 20 and 60. These are compared in figure 6 with the profile obtained for 
a jet exhausting into still air with a rate of spread given by 

dqdx = 0.109. 

This value for the rate of spread was obtained from the tests with U,/U, = 0.07 
by comparing calculated shear-stress profiles at this velocity ratio with those 
obtained for a jet in still air using equation (7). The lateral mean velocity profiles 
in figure 6 are all broadly similar although departures from both the still-air 
profile and self-preservation are apparent. 

It is also worth noting that the inflow angle a t  the edge of the jet, 

t a r1(  V / U )  z V / U ,  

in the present tests was much less than in a jet with U, = 0 (see figure 7). This 
reduction of inflow angle suggests that the present measurements should be more 
accurate in this region of the flow than in previous experiments with U, = 0. 

One further comment on the mean velocity results is necessary. When the 
free-stream velocity is finite, fluid particles that leave the jet nozzle arrive at 
a given value of x/h more rapidly than in a jet exhausting into still air, i.e. the 
free-stream tends to 'sweep ' the jet along. This effect is important when com- 
paring the approach to self-preservation found in the present tests with that 
found previously in tests with U, = 0 and, in order to obtain some idea about its 
magnitude, the time taken for a particle travelling with the jet centre-line 
velocity to reach a given value of x/h has been calculated for both U, = 0 and 
U, + 0. This time, which subsequently will be referred to as the 'existence' time, 
is given by 
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In the self-preserving region of a plane jet exhausting into st,ill air 

{pU~(x-x,)/J)~ = C ( =  a constant), (19) 

where J is the jet momentum flux and xo is the shift in the apparent origin 
of the flow due to the time taken to establish self-preservation. It is found that 
this expression is also in good agreement with experimental results for jets 
in slow-moving airstreams, provided J is taken to be the excess jet momentum 
flux.? For a jet with a uniform velocity UJ across the jet nozzle 

J = puj (UJ-  Ui)h, 
and equation ( 19) becomes 

uO/(uJ(uJ - Ul))t = C/(x/h-sO/h)'. (20) 

If we consider regions sufficiently far downstream so that x/h> xo/h then 
equations (18) and (20) give 

where 

When U, = 0, this becomes 

Using a value of C = 2.4, which gives good agreement with experimental results, 
these last two relationships show that on an existence-time basis, the flow at 
x/h = 70 with U,/UJ = 0.16 is roughly equivalent to the flow at x/h = 60 with 
U, = 0. Thus, there is no serious stretching of the x-co-ordinate to be taken into 
account when comparing the approach to self-preservation in the present tests 
with that of previous work. 

4.2. Sew-preservation of the turbulence structure 

The distributions across the jet of the static pressure coefficient at various longi- 
tudinal stations are shown in figure 8. The profiles are essentially similar for 
x/h 2 30 and this suggests that, beyond this station, the turbulence structure 
is a t  least close to a state of self-preservation. The u"/Ui profiles shown in 
figure 9 confirm this. 

The variations of the static pressure coefficient and u"/Ui along the centre-line 
of the jet are shown in figures 10 and 11 respectively. Also shown are the corre- 
sponding resultsobtained by previous experimenters for a jet instill air. The agree- 
ment between each set of data is comparatively poor and, although differences 
in magnitude could be due to the type of instrumentation used, even the trends 
are somewhat different. The present results show that self-preservation is estab- 
lished for x/h 2 30, whereas previous experiments show that self-preservation 

t This conclusion results from a more general investigation into the spread of a jet in 
a moving airstream, which will be reported more fully at  some later stage. 
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does not occur a t  least until x/h 2 50. No satisfactory explanation for these 
differences can be offered. However, the repeatability of the present results with 
different hot-wire anemometers was very good and the agreement between 
results with UJU, = 0.07 and UJU, = 0.16 was also excellent. In  addition, some 
tests were made with the jet Reynolds number roughly halved but this had no 
effect on the results. 

2 1 0 

Y l 6  

1 

Yl6 
FIGURE 8. Static pressure-coefficient profiles. 
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FIGURE 9. u"/UZ, profiles. 
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It is instructive at this stage to compare the approach to self-preservation of 
the plane jet with the plane wake. Townsend showed that self-preservation of 
the turbulence structure of a plane wake did not occur until the distance down- 
stream from the circular cylinder was greater than 500 diameters, although the 

O O  b 20 40 60 
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I 

FIGURE 10. Variation of static pressure along the jet centre-line. 
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FIGURE 11. S I U :  variation along the jet centre-line. 

main features of the self-preserving flow were established at 

) 

roughly 200 
diameters downstream. In  the plane-jet case, the present work indicates that the 
flow is closely self-preserving for x/h 2 30. A simple, though not necessarily 
precise, means of comparing the results for the two flows is on the existence-time 
basis. For a plane wake, Townsend (1956) obtained 

q t t , / a  = l.l(x/d), 
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where d is the cylinder diameter. For the plane jet (U, = 0 ) ,  we have 

UJte/h = O*ZS(x/h)%. 

Thus, for equal existence times 

(s/h),\, = 3-95(z/d),,,,. 

Using the results for the plane wake suggests that the structure of the plane jet 
should be approximately self-preserving for x/h > 90 and closely self-preserving 
for s/h 2 160. These values are significantly larger than the value obtained from 
the present experiments. A likely cause for this difference is that the wake flow 
close to the circular cylinder contains a considerable excess of turbulent energy 
over the self-preserving wake and this excess will take a long time to decay. By 
contrast, the conditions at the nozzle of a plane jet are such that the turbulent 
energy is much less than that contained in the self-preserving jet and the approach 
to self-preservation is characterized by a production of turbulent energy up to, 
rather than by a process of decaying down to, the equilibrium self-preserving 
value. Although production and dissipation times for the turbulent energy are 
roughly similar (see Townsend 1956, p. 96), the difference between the turbulent 
energy close to the cylinder in the wake flow and far downstream in the self- 
preserving region of the flow is much greater than the difference in a plane jet 
between the conditions close to the jet nozzle and far downstream. This may 
well account for the somewhat different approaches to self-preservation of the 
wake and the jet. In this context, it  would be interesting to study the approach 
to self-preservation of a wake flow behind a streamline body which did not 
generate the same excess of turbulent energy as the comparatively bluff circular 
cylinder. 

4.3. The intermittency factor 

The intermittency factor was measured directly on a simple instrument 
previously described (Bradbury 1964). Comparisons between these direct 
measurements and intermittency -factor results obtained from film recordings 
of hot-wire signals showed good agreement. Figure 12 shows distributions of 
intermittency factor across the jet which are broadly similar to those obtained by 
Corrsin & Kistler (1954) in an axisymmetric jet and, in consequence, they 
support Townsend’s assertion that the large eddies in jets are smaller than those 
in wakes. 

A point of interest is whether the essentially irrotational flow that exists 
between the turbulent ‘bursts’ has a mean velocity equal to the free-stream 
velocity or whether it is accelerated by pressure forces to have a mean velocity 
equal to that of the turbulent fluid. Direct measurements by Townsendin a wake 
flow indicate that the irrotational flow has essentially the same mean velocity as 
the turbulent fluid. On the other hand, some observations in a flat-plate turbu- 
lent boundary layer by Klebanoff (1954) of the output signals from a hot-wire 
anemometer seem to support the opposite view. It had been the intention in the 
present experiments to make some direct measurements on this matter, but 
equipment could not be developed in the time available. However, observations 
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of traces from the hot-wire output did not reveal any obvious correlation between 
a turbulent ‘burst’ and a rise in the ‘mean velocity’ of the sort observed by 
Klebanoff. It may be that, on this point, there is some difference between the 
free turbulent flows and the boundary-layer flows. 

0 1 2 3 

Y/& 
FIGURE 12. The intermittency factor. 

4.4. The distribution of the turbulent shear stress and intensities 
across a seu-preserving plane jet 

As a result of the preceding work, subsequent measurements of the turbulence 
structure were restricted to  two stations in the self-preserving region of the flow 
a t  x/h = 50 and x/h = 70. Measurements of the shear stress at these two stations 
are compared in figure 13 with the shear stress calculated from the momentum 
equation (3 2). The agreement between the measured and calculated results is 
reasonable and provides a welcome check on the accuracy of the hot-wire 
measurements. It will be noted that the shear stress with UJU, = 0.16 is about 
10 yo larger than in a jet with U, = 0 and d8/dx = 0.109. A possible explanation 
for this is that there is a reduction in the strain rate ratio (aU,ax) /(aU/ay), in the 
outer region of the jet with UJU, = 0.16 as compared to the jet in still air and, 
according to Townsend’s large-eddy hypothesis, this would lead to somewhat 
larger eddies and a corresponding increase in the eddy viscosity-coefficient. 
However, the difference in shear stress is not large and does not affect the general 
structure of the flow. 

The 3 and 2 measurements were made with a single sloping hot-wire anemo- 
meter. This simple technique is inherently less accurate than the X-wire method 
so that the distributions of 2 and G a r e  probably not as accurate as the 2 distri- 
butions. However, the results of these and the u‘i measurements have been 
summarized in figures 14 and 15, which show the distributions of the three com- 
ponents of the turbulent motion and the turbulent energy = u2+v2 +w2, 

_ _ _  
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respectively, across the jet in the self-preserving region of the flow. By comparison 
with Townsend's wake measurements (Townsend 1956, pp. 142 and 143), it is 
clear that the distributions of these quantities across the plane jet are very similar 
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FIGURE 13. Shear-stress profiles. 
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FIGURE 14. Distributions of turbulent intensities in a self-preserving jet. 

to those in the plane wake, although they are, of course, different in magnitude. 
This similarity with the wake flow is better illustrated by the comparisons of the 
ratios of the turbulent intensities and shear stress in figures 16 and 17. The 
results for the two flows are in moderately good agreement with one another and 
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they show that, over the main portion of the flow, there is a measure of similarity 
in the turbulence structure although i t  is at best only a very rough similarity, 
i.e. the ratios of the turbulent intensities to one another and to the shear stress 
are roughly constant over a large portion of the shear-layer. 
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FIG~RE 15. Turbulent energy distribution across a self-preserving jet. 
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The results of measurements of the shear-stress correlation coefficient, R,,, in 
a turbulent wall jet by Eskinazi & Kruka (1962) and also in an axisymmetric 
jet by Gibson (1963) are compared with the present results in figure 18. The 
agreement is again quite good and supports the idea of a tendency towards a 
universally similar flow structure for all turbulent jet and wake flows. 
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FIGURE 17. The distribution of ?B/L2 across the jet. 
Y I J  

\ o  
\ 
\ 

YlS 
FIGURE 18. The shear-stress correlation coefficient distribution. 

4.5. T h e  turbulent energy balance 

The turbulent energy balance may be written in the approximate form 

uap vap .--au - -au a ~ 

- - + - - + “ w - + ( U 2 - w 2 ) - + - ( * q 2 w + ~ ~ ) + E  = 0, 
2 ax 2 ay ay ax ay 
+J wL-y--J-w 
adveetion production production diffusion dissipation 

from shear from normal 
stresses stresses 
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where E is the viscous dissipation of turbulent energy. If the distributions of 
the advection, production and dissipation terms are known, the distribution 
of the diffusion term can readily be obtained by difference. The advection 
and production terms were obtained from the turbulence measurements already 
described. The dissipation term was obtained by measuring the mean square of 
the time derivative of the u-component of velocity and using the expression 

E = 15u(au/at)2. 

This expression assumes that the eddies primarily responsible for the dissipation 
are isotropic and move with the local mean velocity. In  the present experiments, 
it  was found that the frequencies of the dissipating eddies extended up to and 
beyond 15 kc/s and it is certain that wire-length effects and possibly inadequate 
compensation in this frequency range led to values of the viscous dissipation that 
were much too small. Nevertheless, the energy balance has been obtained by 
suitably scaling the measured values of viscous dissipation to ensure in the final 
energy balance that 

m a  - 
- (*q2v+pv)dy = 0, so aY 

i.e. the net diffusion of turbulent energy across the flow is zero. The resulting 
energy balance is shown in figure 19. It proved necessary to scale the measured 
distribution of the viscous dissipation by a factor of nearly two in order to obtain 
a sensible energy balance. 

The main features of the energy balance are: 
(i) The distribution of the viscous dissipation term is very similar to that 

found in a wake by Townsend and shows that, over the central portion of the 
flow, this term is roughly constant. By making an allowance for the intermit- 
tency factor, the region of approximately constant viscous dissipation is extended 
further. 

(ii) The viscous dissipation and production terms are the most significant in 
the energy balance. This may be illustrated by comparing the integral values of 
the various terms in the energy balance over the jet width given in table 1. 

(iii) Unlike the wake flow, it appears that the diffusion of turbulent energy 
(&q% + jZ) is at  least roughly correlated with the local mean intensity gradient. 

The micro-scale of the turbulence h = [ ~ ~ / ( a u / a z ) ~ ] &  can be calculated from 
the viscous dissipation term and, as shown in figure 20, the distribution of this 
length scale across the jet is again very similar to that found in a wake flow. 

It is interesting to check the validity of the local isotropy assumption involved 
in the present measurements of viscous dissipation. According to Corrsin (1957), 
it  is necessary that two conditions should be fulfilled. These are 

- 

_ _ _ _  

The first condition is simply a requirement that the rate of strain due to the 
dissipating eddies be much larger than that due to the mean velocity gradient 
and the other condition is arequirement that the wave-numbers of the dissipating 

4 Fluid Mech. 23 
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FIGURE 19. The turbulent energy balance. 
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eddies be much larger than those at which energy is fed into the turbulence. For 
the present measurements, it  is found that 

Thus the use of the simplified expression for the viscous dissipation term would 
seem well justified. 

0 1 .o 2.0 

Y/6 

FIGURE 20. The micro-scale of the turbulence. 

4.6. The eddy structure 

Townsend has postulated what is essentially a double structure for shear flows. 
The largest eddies appear to be 'jets ' of fluid that originate at the boundary of 
the strained turbulent fluid with the non-turbulent fluid and which erupt out- 
wards (Grant 1958). It is these eddies that appear responsible for the intermit- 
tency phenomenon. The remaining turbulence is assumed to be about one-tenth 
of the scale of the large eddies and to contain between 80 and 90 % of the turbulent 
energy. These smaller eddies are also assumed to be primarily responsible for the 
shear stress. From this model, Townsend has built up a convincing model of 
turbulent shear flows which enables the value of the eddy viscosity coefficient 
to be predicted roughly and which also explains the difference between the values 
of this eddy viscosity coefficient in jet and wake flows. However, in spite of his 
extensive experimental studies of the wake flow structure, the validity of his 
model is not yet firmly established and a great deal more work is required to 
clarify the precise nature of the turbulence structure. In  the present experiments, 
a few correlation-coefficient and spectrum measurements were made which, 
although they are in no way comprehensive, are worth reporting in so far as they 
may add to the information on this eddy-structure problem. The measurements 

4-2 
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were carried out in the jet at y16 = 0.5 and xlh = 50 and they consisted of 
measurements of the lateral correlation-coefficient R,,(O, r ,  0) ,  subsequently 
referred to as R,, and some L2- and 5Gspectra measurements. 

The correlation coefficient measurements were obtained with one wire fixed 
at y/6 = 0.5 and the other wire traversed outwards towards the edge of the jet. 
In  order to obtain some idea of the length scales appropriate to the various 
frequencies, these correlation measurements were obtained by passing the various 
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FIGURE 2 1. Filtered lateral correlation coefficients. 

signals through a variable high-pass filter unit and measuring the outputs for 
different settings of the filter. The resulting correlation coefficients are shown in 
figure 21. Before discussing these filtered correlation measurements, the overall 
lateral integral scale 

P m  

will be compared with the values found in other free turbulent flows. Since the 
mean velocity profiles in all these flows are roughly similar, it  is possible to use 
6 as a reference length for the width of the shear layer in every case. In  addition 
to a comparison of values of L,, table 2 also compares values of the longitudinal 
integral scale 

L, = JOm R,dx, 

where values are available. 
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Although the data is not very complete, it  seems that the longitudinal integral 
scale L, is very roughly constant for all the flows considered but the lateral 
scale is smaller in jets than it is in wakes. This is consistent with the idea that the 
comparatively large lateral velocities found in jets but not in wakes inhibit the 
growth of the large eddies in the lateral direction. 

Flow 

Isotropic turbulence 
Plane jet 
Plane wake 
Plane wake 
Mixing layer 
Mixing layer 
Circular jet 
Circular jet 
Circular jet 

Author 

Theoretical result 
Present measurements 
Townsend (1956) 
Grant (1958) 
Liepmann & Laufer (1947) 
Laurence (1956) 
Corrsin (1943) 
Corrsin & Uberoi (1949) 
Gibson (1963) 

TABLE 2 

L,IS LZIS L,IL, 
I 2.0 - 

- 0.38 - 
0.6 0.83 1.37 
0.5 0.83 1.66 
0.26 - - 

0.23 - - 
0.17 0.92 5.4 

0.95 - 

- - 2.5-3.0 

- 

In  order that the results of the spectrum measurements may be compared with 
any future measurements in a plane jet in still air, a frequency parameter has been 
used which is given by Q = nt31Uaf, where n is the frequency and U, is the average 
mean velocity across the jet, Ul+ 0*5U0. In  a truly self-preserving plane jet in 
still air, there would be no ambiguity if the velocity in the frequency parameter 
was chosen as U, but, where the free-stream velocity is not exactly zero, it is 
perhaps better to use U, as it has been shown by Davies, Fisher & Barratt (1963) 
that the average convection velocity of the turbulence in the mixing layer of a jet 
is not very different from this average mean velocity U,. The spectrum measure- 
ments were obtained by passing the hot-wire anemometer signals through a 
variable high-pass filter and measuring the mean-square output voltages for 
a range of settings of the filter. If GP(!J) and UVG( 0) represent the contributions 
to 2 and UV respectively, from frequencies between a and i2 + dQ, then the 
outputs from the filter unit gave 

jo”P(Q) d!2 and jw 0 G(Q) d!2, 

where a’ is the effective setting of the high-pass filter. These latter quantities 
are shown in figure 22. The most obvious feature of these results is the fact that 
the shear-stress spectrum approaches zero more rapidly than the 2 spectrum. 
This is a well-known phenomenon and shows that there is a range of eddies which 
do not contribute anything to the shear stress. This is a necessary condition for 
the existence of local isotropy and shows that the turbulence structure was not 
obviously inconsistent with this hypothesis. The results also show that the 
eddies primarily responsible for both the major part of the shear stress and 
turbulent energy are contained in a frequency range from SZ = 0 to Q = 0.3. 
The filtered correlation measurements show that when the high-pass filter was 
set to a frequency equivalent to SZ = 0.22, the lateral integral scale was reduced 
by only about 30 % to a value of L,/6 = 0.26. This suggests that a large portion 
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of the turbulent shear stress and energy is carried by eddies which are quite large 
in comparison with the width of the shear layer. This is in accord with recent and 
far more comprehensive measurements of Bradshaw et al. (1963) and suggests 
that Townsend’s separation of large- from shear-carrying eddies may not be 
a particularly valid assumption. 

C? = nS/UM 

FIGURE 22. The shear stress a n d 2  spectrum. 

Some experiments were also carried out in which the average frequency of the 
pulses from the intermittency meter was measured.? This was an extremely 
crude experiment and these average frequencies may be as much as 50 yo in error. 
Nevertheless, the results may be of interest and, so that their significance can 
be understood more easily, an imaginary case will first be considered in which 
the boundary of the turbulent flow is in the form of a sine wave travelling with 
the average mean velocity of the flow, UJf. Now, in the imaginary flow, the out- 
puts from the intermittency meter at different positions in the intermittent 
region would be similar to those shown in figure 2 3 ( b ) .  The frequency meter 
(which was, in practice, a pulse coufiter) would give a constant value of the 
frequency in the intermittent region, say n, and zero frequency in the fully- 
turbulent or non-turbulent flow, as in figure 23 (c). This frequency may be used 
to define an eddy wavelength, Un31n. If these eddies are to be consistent with 
self-preservation, their wavelengths should be a constant proportion of the jet 
width so that the distribution of the parameter nS/qlf across the jet should be 
independent of the longitudinal station. The results of the present measurements 
are shown in figure 24 and they show that, although the accuracy of the measure- 
ments is poor, the results are not obviously in contradiction with self-preservation 
of the eddies responsible for intermittency. Further, since the turbulence is 
made up of a whole spectrum of eddies, the frequency distribution is not ‘square ’. 
Nevertheless, we may take the maximum value of the parameter Sn/UM to give 

t The duration of each pulse corresponded to the duration of a ‘burst’ of turbulence. 
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FIGURE 23. Frequency measurements of intermittency for a turbulent flow, with a 
sinusoidal boundary. (a) Schematic representation of intermittent region. (b )  Signals from 
the intermittency meter. ( e )  Frequency measurements in the intermittent region. 
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FIGURE 24. Frequency of eddies responsible for intermittency. 
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an idea of the average frequency and wavelength of the eddies responsible for 
intermittency. On this basis 

nS/UAtf = 0.3 2 0.1. 

Now, from the spectrum measurements previously discussed, it appeared that 
the bulk of the shear stress and turbulent energy was contained in the frequency 
range from a =  0 to L2 = 0.3, and this seems to suggest that the eddies respon- 
sible for intermittency are also responsible for a large portion of the shear stress. 
It is appreciated that the interpretation put upon the present results is not free 
from objections particularly regarding the use ofa  single velocity U,, to compare 
measurements a t  different points across the jet; nevertheless, combined with the 
results of previous investigators, this provides mounting evidence to suggest that 
the shear-carrying eddies are among the larger eddies in the flow and, in fact, 

10' 

loo 

Ei lo-' 
;;; 

10-1 100 10' lo2 
.Q = nS/WM 

FIGURE 25. 3 spectrum showing an inertial subrange. 

may be among those eddies responsible for intermittency. This suggestion is 
contrary to Townsend's large-eddy hypothesis and is clearly a matter requiring 
further attention. There is a good deal of evidence to show that mechanisms at 
least similar to those proposed by Townsend are at work in turbulent shear flows, 
and it may be that his flow model can be made more adequate if some allowance 
can be made for the contributions from the large eddies to the overall shear stress. 
However, more experimental work is required before any such modifications can 
be contemplated with confidence. 

To return to  the spectrum measurements, the one-dimensional spectrum 
function P(Q) has been obtained by differentiating graphically the results of 
figure 22. Although this is not a very accurate procedure, this spectrum function, 
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shown in figure 25, clearly exhibits an inertial subrange region in which 
F(  52) cc 52-9. The condition necessary for the existence of an inertial subrange is 
that there should be a region in wave-number space which contributes very little 
either to the turbulent energy or to the viscous dissipation. This requires a very 
high Reynolds number and it has been suggested that R, = (G2)9A/v should not be 
less than 500 (see Gibson 1963). In  the present experiments, the value of R, was 
about 350 and the separation between energy-containing eddies and those 
responsible for viscous dissipation seems to have been large enough to permit the 
existence of a limited inertial subrange. The Universal Equilibrium theory (see, 
for example, Hinze 1959) shows that, in the inertial subrange, the spectrum 
function is given by - 

u2F(lc) = ++A ~3k-8 ,  

where A is a universal constant and k is the wave-number. The present results 
give A = 1.54, which is in good agreement with the value of 1.6 obtained by 
Gibson (1963) in a circular jet and the value of 1-44 obtained by Grant, Stewart 
& Moilliet (1962) in a tidal channel. 

4.7. The unsteady irrotational $ow 
The convoluting edge of a turbulent flow induces unsteady but irrotational 
velocity fluctuations in the free stream. According to Phillips (1955) and Stewart 
(1956), the components of this unsteady motion are related to one another such 

0 2  = u 2  + w2. 
that 

Furthermore, at  large distances from the edge of the turbulent flow, it is found 
that 

where yo is the apparent origin of these irrotational fluctuations. Measurements 
of the 2 component confirm the validity of this expression for this term as shown 
by figure 26. This data is well represented for y/6 2 2.3 by the expression 

- _ -  

- _ _  
i v 2  = u2 = w2a(y- 

U 2 / Q  = O*0016[(~-~o)/S]-4, 

where yo/& = 1-33 k 0.03. It is to be noted that the apparent origin of the fluctua- 
tions, yo/6, lies well within the region where turbulent flow exists: the intermit- 
tency factor is approximately 0.8 a t  y/S = 1-33. It is also to be noted that the 
above expression for T2/Ui  appears to  be valid even quite close to the edge of the 
jet, although the theories suggest that its form is only asymptotically correct 
for large values of y/6. This was found to be true also in the case of wake flow 
(see Phillips 1955). 

The 3 and 3 intensities in the irrotational-flow region were obtained with 
a single sloping hot-wire which measured the quantity 2 +a(& or w2), where 
01 is a constant for any given hot-wire (see 3 3). In  order to determine the ratios 
v2/u2 and w2/u2, it  was assumed that 
_ _  -- 
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Thus, from the measurements with the single sloping wire, we have 

u2/u:+a3/u: = (k,+ak,) [(~-y0)p]-4,  

and another similar expression containing w? From the experimental results, 
graphs of [G/Ut + as/ U$]-a and [u"/ U t  + a$/ U;]-* have been plotted against 
(y - yo)/6from which values of k, + ak, and ku+ ak, have been obtained. The final 
results of the measurements at a number of longitudinal stations are given in 
table 3. Considering the inherent lack of accuracy of the single sloping-wire 
technique, these results can be regarded as providing satisfactory confirmation 
of the predictions of the theories of Phillips and Stewart. 
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FIGURE 26. 2 distribution in the irrotational flow. 

xlh a k,+ak, k , f a k ,  kJk ,  k,lk, 
48.5 0.593 0.00355 0.00275 2.06 1.21 
51 0.84 0.00345 0.0026 1.38 0.75 
70 0.41 0.00355 0.00225 3.0 1.02 

Average values 2.5 1.0 

TABLE 3 



The structure of a self-preserving turbulent plane jet 59 

5. The applicability of the various simple theories of turbulence 
Both the constant-exchange hypothesis and the mixing-length theories postu- 

late a gradient transport mechanism, but this is not the only type of transport 
mechanism that is possible in turbulent shear flows. Townsend (1956) and 
Batchelor (1950) have considered a model flow in which the transport process 
may be represented as the sum of a gradient transport mechanism and a bulk 
transport mechanism. This model is in keeping with Townsend’s suggestion that 
the turbulent eddies may be divided roughly into two groups, namely the large 
eddies which will be responsible for the bulk transport, and the much smaller 
energy containing eddies which will be responsible for the gradient transport 
mechanism. For this model, we may write 

where 8 is the average value of the transported property, 7 is the average value 
of the bulk transport velocity and K is a gradient diffusion coefficient. On 
a qualitative basis, Townsend was able to explain many of the observed features 
of a turbulent shear flow with this model, but difficulties arise when quantitative 
use of the model is attempted. The relative importance of the bulk and gradient- 
transport mechanisms depends on the nature of the property transported and 
there remains the problem of attaching values to the bulk transport velocity and 
the gradient diffusion coefficient. This lack of precision in this model makes 
a detailed comparison with experimental data difficult and, in the present case, 
we shall restrict ourselves to the more straightforward comparison with the 
simple gradient transport theories. 

eV = 87 + K aslay, 

5.1. The constant-exchange hypothesis 

For the constant-exchange hypothesis to have any physical validity, i t  is neces- 
sary that the turbulence structure be reasonably homogeneous across the jet and 
also that (?)*/L % aU/ay, where L is a representative length scale of the turbu- 
lence. Now, although the fine structure of the turbulence is apparently closely 
homogeneous across the width of the flow, reference to the distribution of 
turbulent energy (figure 15) shows that homogeneity of the energy-containing 
eddies cannot be regarded as a particularly good assumption although, a t  the 
same time, it is not wholly unreasonable over the central portion of the flow and 
it has been argued that the ‘stirring’ action of the largest eddies will tend to 
ensure a roughly homogeneous turbulence structure. However, the discovery 
that ((?)*/L,)/(aU/ay) = 0(1) is sufficient to show that the constant exchange 
hypothesis cannot have any real physical validity. Notwithstanding this last 
point, the hypothesis remains a useful empiricism and if we calculate the distribu- 
tion of eddy viscosity across a plane jet including an allowance for the intermit- 
tency factor, we find that over an appreciable region of the flow, the eddy 
viscosity coefficient is roughly constant (see figure 27).1 

t Figure 27 shows the distribution of the reciprocal of the eddy Reynolds number 
l / R ,  = vT/UoS = g l e ( q ) / f ’ ( q )  and also l/yR,. The calculations were made for 77, = 0 and 
d&/dx: = 0.109 for simplicity. 
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5.2. Prandtl's mixing-length theory 

In  the case of Prandtl's mixing-length theory, it is necessary that (u2)*/L M dU/dy 
and that the turbulent velocity - _  fluctuations should be similar throughout the 
flow, i.e. parameters like v2/u2, etc. and R,, should be constants. 

If we calculate the distribution of the mixing length across the jet by assuming 
that 

(a) L/& = {(zc")W/(aU/ay) = s1(r)/f'(r) 
and ( b )  L/& = {(w"~)/(au/aY) = { g & P / f ' ( r ) 9  
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FIGURE 27. Eddy viscosity distribution across a plane jet. 
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FIGURE 28. Mixing-length distribution across a plane jet. 

we obtain the results shown in figure 28. With the obvious exception of the central 
region of the flow, both distributions show that the mixing length is roughly 
constant over the main portion of the jet and, moreover, it is interesting to note 
that the former relationship gives a value of L/S w 0.35 which is in close agree- 
ment with the measured value of L,/S = 0.38. The numerical difference between 
the two calculated distributions of mixing length is not important since it arises 
from the fact that R,, =I= 1 and 2 =I= 2. 
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The validity of the flow similarity assumption can be tested by reference to 
figures 16, 17 and 18. As discussed earlier, these show that, except near the flow 
centre, the similarity assumption may not be wholly unreasonable although it is 
again not a very precise assumption either. 

Finally, it  has been shown by Batchelor (1950) that the Prandtl mixing-length 
theory requires an energy balance between the production and viscous dissipa- 
tion of turbulent energy. Reference to the energy balance (figure 19) shows that, 
over a region of the flow, the production and dissipation terms are indeed 
predominant although the advection and diffusion terms are by no means 
negligible. 

5.3. Further comment on the theories of turbulence 

On balance, it seems that of the two simple gradient-transport theories discussed, 
the Prandtl mixing-length theory gives a slightly better description of the flow. 
However, this result does not necessarily have any far-reaching significance 
because i t  is restricted to the plane-jet flow. For example, in the plane wake, the 
energy balance between production and dissipation of turbulent energy implied 
in the mixing-length theory is not found. In  any case, the structure of the jet 
flow does not obviously conform to any really well-defined pattern as witnessed 
by the comparative ease with which the experimental results have been shown 
to exhibit features associated with quite different assumptions about the flow. 
On the one hand, in connexion with the constant-exchange hypothesis, it  was 
argued that the assumptions of a roughly constant value of turbulent energy 
across the jet and 7a aU/ay were not unreasonable. On the other hand, it was 
then shown that (?)*a LaU/ay and 7cc (i3U/azJ2 were also reasonable assump- 
tions. This duplicity of interpretation is not uncommon in work on turbulence 
and it probably arises, to some extent, because the turbulence comprises a whole 
spectrum of eddies with their own length and time scales and which are subjected 
to different physical controlling factors. This diversity of eddy scales ensures that 
no single simple mechanism can be expected to describe the whole of the turbu- 
lence structure. Hence, where there is apparently a measure of support from the 
experimental work for two different assumptions, it may well be that both 
assumptions apply but to different ranges of eddy size. In  fact, it  is clear that to 
be able to  make progress on the turbulence problem, i t  is necessary to split the 
turbulence into groups of eddies (even though this in itself is artificial) with more 
or less distinct scales of length and time and to then construct theories or 
mechanisms to account for the behaviour of each eddy group and also its inter- 
action, if any, with other eddy groups. This is, of course, precisely the approach 
used in the theories of the dissipating range of eddies and also used by Townsend 
in his large-eddy hypothesis. 

In  conclusion, it is interesting to reconsider very briefly the flow structure in 
the light of the experiments of Grant (1958) and some of the present results. 
According to Grant, the most obvious large-scale motions in a wake are ‘a series 
of more or less regularly spaced “jets ” of turbulent fluid proceeding outwards 
from the central plane of the wake ’. Motions similar t,o those described by Grant 
can often be seen in jets of steam and in smoke from chimneys and they are 
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clearly responsible for intermittency. Now, it has been suggested earlier that 
these large eddies may contain a considerable portion of the turbulent energy 
and shear stress and it is interesting to note that these jet-like motions would 
give rise to a distribution of the (?)* intensity similar to that postulated by the 
Prandtl mixing-length theory, provided the lateral velocity with which the jets 
grew was large enough to prevent appreciable diffusion of the fluid within the 
jets during the course of their development. If this last condition were fulfilled, 
and the eddies were responsible for a large part of the shear, we could expect that 
a high instantaneous value of the shear stress would be accompanied by a higher 
than average value of the w-component of velocity. This suggests that a test of 
these ideas would be provided by measurements of the quantity uvZE(G)*, 
which should be much greater than 1.0 if the above ideas were correct. Obviously 
measurements of this sort would not be enough and there is still a great need for 
further correlation and spectrum measurements including, perhaps, some more 
careful measurements using the signals from an intermittency meter of the sort 
used in the present tests. 

6. Conclusions 
The results of the turbulence measurements have shown that self-preservation 

in a turbulent plane jet is established at distances from the jet nozzle greater than 
thirty jet nozzle widths. In the self-preserving region of the jet flow, the distribu- 
tions of the turbulent intensities and shear stress are found to be very similar to 
those found in a plane wake by Townsend. This suggests that there may be some 
tendency towards a universal structure for all turbulent free flows. The major 
differences between the plane jet and wake, which were partly anticipated by 
Townsend, were that the large eddies in the plane jet were somewhat. smaller than 
those found in the plane wake and, also, the turbulent energy balance for the 
plane jet showed a greater contribution from the production and dissipating 
terms than in the case of a plane wake. The structure of the small-scale eddies 
responsible for the viscous dissipation appeared to be constant over the central 
portion of the jet width and all the indications were that it was closely isotropic. 
In  fact, some evidence was found suggesting the existence of aninertial subrange. 
As far as the shear-cariying eddies were concerned, it appeared that these were 
among the largest eddies in the flow and responsible, in part a t  least, for the 
intermittency phenomenon. This conclusion is contrary to Townsend’s large 
eddy hypothesis and is a matter that deserves additional attention. It was found 
that the assumption of a nearly uniform level of turbulent energy across the jet 
was not a particularly good assumption since it proved possible to represent the 
distribution of the (G)* intensity quite well by the Prandtl mixing-length 
hypothesis thus showing a strong correlation between the turbulent energy and 
the mean velocity gradient. Finally, the irrotational velocity fluctuations out- 
side the jet bore out the conclusions of the theories of Phillips (1955) and Stewart 
(195fi), and the anomalies between these theories and the experimental work of 
Corrsin (1943) on a circular jet would seem now to be almost certainly caused by 
instrumentation errors. 
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